Abstract

Poly(ADP-ribose) polymerases (PARPs) are nuclear enzymes which catalyze the poly-ADP-ribosylation involved in gene transcription, DNA damage repair, and cell-death signaling. As PARP-1 protein contains a DNA-binding domain, which can bind to DNA strand breaks and repair the damaged DNA over a low basal level, the inhibitors of poly(ADP-ribose) polymerase 1 (PARP-1) have been indicated as the agents treated for cancer. This study employed the compounds from TCM Database@Taiwan to identify the potential PARP-1 inhibitors from the vast repertoire of TCM compounds. The binding affinities of the potential TCM compounds were also predicted utilized several distinct scoring functions. Molecular dynamics simulations were performed to optimize the result of docking simulation and analyze the stability of interactions between protein and ligand. The top TCM candidates, isopraeroside IV, picrasidine M, and aurantiamide acetate, had higher potent binding affinities than control, A927929. They have stable H-bonds with residues Gly202 and, Ser243 as A927929 and stable H-bonds with residues Asp105, Tyr228, and His248 in the other side of the binding domain, which may strengthen and stabilize ligand inside the binding domain of PARP-1 protein. Hence, we propose isopraeroside IV and aurantiamide acetate as potential lead compounds for further study in drug development process with the PARP-1 protein.

Highlights

  • Poly(ADP-ribose) polymerases (PARPs) are nuclear enzymes which catalyze the poly-ADP-ribosylation to combine one or more ADP-ribose moieties from intracellular nicotinamide adenine dinucleotide (NAD+) covalently with target proteins [1,2,3]

  • The disordered amino acids of poly(ADPribose) polymerase 1 (PARP-1) protein were predicted by PONDR-Fit with the protein sequence from Swiss-Prot (UniProtKB: P09874)

  • The binding domain of PARP-1 protein may have a stable structure in protein folding

Read more

Summary

Introduction

Poly(ADP-ribose) polymerases (PARPs) are nuclear enzymes which catalyze the poly-ADP-ribosylation to combine one or more ADP-ribose moieties from intracellular nicotinamide adenine dinucleotide (NAD+) covalently with target proteins [1,2,3]. The C-terminal catalytic domain catalyzes the poly-ADP-ribosylation to combine one or more ADP-ribose moieties from intracellular nicotinamide adenine dinucleotide (NAD+) covalently with target proteins [11,12,13]. As PARP-1 protein contains a DNAbinding domain, which can bind to DNA strand breaks and repair the damaged DNA over a low basal level, the inhibitors of poly(ADR-ribose) polymerase 1 (PARP-1) have been indicated as the agents treated for cancer [14,15,16,17]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call