Abstract
A series of catechol-based sensitizers, Cat-I to Cat-XV, for a possible application in type II DSSCs is presented. The electronic structures and excited state properties of free and bound to (TiO2)9 dyes have been analysed and compared by means of Density Functional Theory (DFT) and Time Dependent DFT (TDDFT) methods. In particular, the effect of introducing electron-donating and electron-withdrawing substituents, as well as the effect of introducing an ethylene spacer as π bridge between the substituents and the catechol unit to increase the conjugation has been investigated. Moreover, key aspects that could strongly influence the direct (type II) electron injection mechanism are analyzed and discussed. The results of the calculations suggest that the introduction of the π bridge contributes to enhance the dye-to-TiO2 charge transfer (DTCT) efficiency regardless of the presence of electron-donating or electron-withdrawing substituents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.