Abstract
Presently, there are no approved drugs or vaccines to treat COVID-19, which has spread to over 200 countries and at the time of writing was responsible for over 650,000 deaths worldwide. Recent studies have shown that two human proteases, TMPRSS2 and cathepsin L, play a key role in host cell entry of SARS-CoV-2. Importantly, inhibitors of these proteases were shown to block SARS-CoV-2 infection. Here, we perform virtual screening of 14,011 phytochemicals produced by Indian medicinal plants to identify natural product inhibitors of TMPRSS2 and cathepsin L. AutoDock Vina was used to perform molecular docking of phytochemicals against TMPRSS2 and cathepsin L. Potential phytochemical inhibitors were filtered by comparing their docked binding energies with those of known inhibitors of TMPRSS2 and cathepsin L. Further, the ligand binding site residues and non-covalent interactions between protein and ligand were used as an additional filter to identify phytochemical inhibitors that either bind to or form interactions with residues important for the specificity of the target proteases. This led to the identification of 96 inhibitors of TMPRSS2 and 9 inhibitors of cathepsin L among phytochemicals of Indian medicinal plants. Further, we have performed molecular dynamics (MD) simulations to analyze the stability of the protein-ligand complexes for the three top inhibitors of TMPRSS2 namely, qingdainone, edgeworoside C and adlumidine, and of cathepsin L namely, ararobinol, (+)-oxoturkiyenine and 3α,17α-cinchophylline. Interestingly, several herbal sources of identified phytochemical inhibitors have antiviral or anti-inflammatory use in traditional medicine. Further in vitro and in vivo testing is needed before clinical trials of the promising phytochemical inhibitors identified here.
Highlights
In December 2019, a new respiratory disease with unknown cause with clinical symptoms of fever, cough, shortness of breath, fatigue and pneumonia was first reported in Wuhan, (China) [1,2,3].While most cases of this new disease show mild to moderate symptoms, a small fraction of cases, especially those with comorbid conditions like diabetes and hypertension, can develop fatal conditions such as acute respiratory distress syndrome (ARDS) due to severe lung damage [4]
This computational study aims to predict potential phytochemical inhibitors of human proteases, Transmembrane Protease Serine 2 (TMPRSS2) and cathepsin L, that are important for priming of S protein and cell entry of SARS-CoV-2 [10,11,12]
We prepared the ligands for molecular docking with target proteases
Summary
In December 2019, a new respiratory disease with unknown cause with clinical symptoms of fever, cough, shortness of breath, fatigue and pneumonia was first reported in Wuhan, (China) [1,2,3]. While most cases of this new disease show mild to moderate symptoms, a small fraction of cases, especially those with comorbid conditions like diabetes and hypertension, can develop fatal conditions such as acute respiratory distress syndrome (ARDS) due to severe lung damage [4]. In January 2020, a novel betacoronavirus, initially named 2019-nCoV, was discovered to be the etiological agent of this. Molecules 2020, 25, 3822 new disease [1,2,3]. By 30 January 2020, the 2019-nCoV had spread to more than 20 countries and the World Health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.