Abstract

Estrogen receptor α (ERα) plays a critical role in breast cancer (BC) development. The standard therapeutic strategies for ERα- positive (ERα+) BC consist of impairing ERα signalling pathway by either estrogen competitors blocking its interaction with the ligand binding domain (LBD) or agents inhibiting the production of estrogen. These strategies are limited by many factors that lead to constitutive activation of ERα and consequently, resistance to treatment. Targeting the DNA binding domain (DBD) of ERα instead of its LBD with small-molecule inhibitors could be an alternative to impair ERα’s signalling pathway. For this purpose, we conducted a structure based virtual screening of DrugBank against the crystal structure of ERα-DBD (PDB ID: 1HCQ) using the Glide module in standard precision (SP) and extra precision (XP) mode of docking. Molecules with XP Gscore less than −8 kcal/mol were selected and visually inspected to keep only the reasonable docking poses. Subsequently, these molecules were clustered using structural interaction fingerprints analysis and the complexes of the top ranked molecules of each cluster based on XP Gscore were subjected to 200 ns molecular dynamics simulations followed by MM-GBSA binding free energy calculation for the last 100 ns of each complex. In this study, we identified three molecules from DrugBank namely DB03450, DB02593 and DB08001 showing significant stability and strong interaction with the key amino acids during MD simulation suggesting a potential inhibition of the target. These molecules could be used as promising lead compounds to impair the ERα signalisation in hormone therapy-resistant breast cancer. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.