Abstract

This study used various approaches and databases to evaluate the molecular processes and identify miRNA sponges and drugs associated with the pathophysiology of stroke caused by heavy metals and their combinations. We found that the genes ALB (albumin), IL1B (Interleukin-1β), F2 (coagulation factor II), APOA1 (apolipoprotein A1), IL6 (Interleukin 6), and NOS2 (nitric oxide synthase 2) were linked to the development of strokes by 18 chemicals and a combination of cadmium, copper, and lead. These results may point to the significance of detoxification and neuroinflammation in stroke as well as the potential for targeting these genes in future stroke therapies. ALB and IL1B were the most common and significant genes. The "selenium micronutrient network," "vitamin B12 metabolism," and "folate metabolism" were shown to be the most significant pathways connected to the risk of stroke brought on by combined heavy metals. The two main cellular elements that may increase the risk of stroke caused by heavy metals were discovered to be "blood microparticle" and "endoplasmic reticulum lumen." We also observed an important chromosome (chr7p15.3), two transcription factors (NFKB2 [nuclear factor kappa B subunit 2] and NR1I2 [nuclear receptor subfamily 1 group, member 2]), and four microRNAs (hsa-miR-26a-5p, hsa-miR-9–5p, hsa-miR-124–3p, and hsa-miR-155–5p) associated with stroke caused by combined heavy metals. Additionally, for these miRNAs, we created and examined in silico microRNA sponge sequences. Triflusal and andrographolide have been identified as potential treatments for heavy metal-induced stroke. Taken together, heavy metals may be a significant contributor to the pathophysiology of stroke, but further investigation into the precise molecular pathways implicated in stroke pathophysiology is required to corroborate these findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call