Abstract
Although many of heat shock proteins (HSPs) are crucial in homeostasis due to their role in maintaining cellular proteostasis by the integration of two pivotal processes—folding and degradation, several decades of cancer proteomics suggest that HSPs may improve cancer establishment and progression. Therefore, it is imperative to explore how these molecules impact patient outcomes and whether their interaction with the immune systems improves the protumour or antitumour environment. Here, using an immunoinformatics approach were investigated the best probable epitopes from ten HSPs (HSP90α, HSP90β, HSPA1A, HSPA1L, HSPA2, HSPA5, HSPA6, HSPB1, HSPB5 and HSP60/HSP10). To achieve this aim, antigenicity, immunogenicity (prediction of continuous and discontinuous B cell epitopes, binding peptides to HLA class I and HLA class II, and overlapping epitopes), analysis of conservancy and population coverage, and prediction of IgE epitopes were evaluated. According to the physicochemical properties used for their prediction (hydrophilicity, flexibility, accessibility and antigenicity propensity), ten continuous epitopes (one per HSPs) were considered as the best and also several regions of each molecule were identified as B discontinuous epitopes. Interestingly, peptides of HSP90β, HSPA2, HSPB1, and HSPB5 were predicted as both continuous and discontinuous B cell epitopes. For all the HSPs evaluated were identified potential overlapping epitopes (“NTFYSNKEI”, “TTYSCVGVF”, “TADRWRVSL”, “VKHFSPEEL” and “CEFQDAYVL”). Moreover, these peptides were negative for IgE epitopes and showed a large coverage in the human population (HLA-A*02, HLA-B*15, HLA-C*03, and HLA-C*12). Taken together, these data indicate that such epitopes may activate both the humoral and cell-mediated response, and thus serve as therapeutic targets for cancer. However, it must be assessed their efficacy and safety in vitro and in vivo before their translation in clinical trials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.