Abstract

Fluconazole and Voriconazole are individual antifungal inhibitors broadly adopted for treating fungal infections, including Candida Albicans. Unfortunately, these medicines clinically used have significant side effects. Consequently, the improvement of safer and better therapy became more indispensable. In this study, a set of 27 1,2,4-triazole compounds have been tested as potential Candida Albicans inhibitors by using different theoretical methods. The created comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) contour maps significantly impacted the development of novel Candida Albicans inhibitors with valuable activities. The mode of interactions between the 1,2,4-triazole inhibitors and the targeted receptor was studied by molecular docking simulation. The proposed new molecule P1 showed satisfied stability in the active pocket of the targeted receptor compared to the more active molecule in the dataset compared to Fluconazole medication. Meanwhile, the binding energy obtained by molecular docking for molecule P1 is -9.3kcal/mol compared with -6.7kcal/mol for Fluconazole medication. Also, MM/GBSA value obtained by molecular dynamics simulations at 100ns for molecule P1 is -33.34kcal/mol compared with -15.85kcal/mol for Fluconazole medication. In addition, molecule P1 showed good oral bioavailability and was non-toxic according to ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties. Therefore, the results indicated compound P1 might be a future inhibitor of Candida Albicans infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.