Abstract

Mechanosensitive channels are membrane proteins that open and shut in response to mechanical forces produced by osmotic pressure, sound, touch and gravity. These channels are involved in multiple physiological functions including hypoosmotic pressure, pain, hearing, blood pressure and cell volume regulation. In plants, these channels play a major role in proprioception, gravity sensing and maintenance of plastid shape and size. In the present study, we identified the mechanosensitive channel of small conductance like (MscS) homologue gene family in rice and analyzed their structure, phylogenetic relationship, localization and expression pattern. Five MscS like genes of rice (OsMSL) were found to be distributed on four chromosomes and clustered into two major groups. Subcellular localization predictions of the OsMSL family revealed their localization to plasma membrane, plastid envelope and mitochondria. The predicted gene structure, bonafide conserved signature motif, domain and the presence of transmembrane regions in each OsMSL strongly supported their identity as members of MscS-like gene family. Furthermore, in silico expression analysis of OsMSL genes revealed differential regulation patterns in tissue specific and abiotic stress libraries. These findings indicate that the in silico approach used here successfully identified in a genome-wide context MscS like gene family in rice, and further suggest the functional importance of MscS-like genes in rice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call