Abstract

ABSTRACT The free COOH group of conventional NSAIDs is a structural feature for non-selective cyclooxygenase (COX) inhibition and the molecular cause of their gastrointestinal (GI) toxicity. In this context, an in house database of synthesizable ester prodrugs of some well-known NSAIDs was developed by combining their -COOH group with -OH of a newly identified antioxidant 4-(1H-benzo[d]imidazol-2-yl)phenol (BZ). The antioxidant potential of BZ was unveiled through in silico PASS prediction and in vitro/in vivo evaluation. The in house database of NSAIDs-BZ prodrugs was first subjected to screening with our previously reported pharmacophore models of hCES1 (AAHRR.430) and hCES2 (AHHR.21) for determining hydrolytic susceptibility. Biotransformation behaviour of screened prodrugs was then assessed by using QM/MM and sterimol parameterization, followed by ADMET calculations to predict the drug likeness. On the basis of in silico results, five prodrugs were duly synthesized and the best three were subject to the in vivo evaluation for their anti-inflammatory, analgesic, antioxidant activities, and ulcerogenic index. Among these prodrugs, BN2 and BN5 displayed better anti-inflammatory and analgesics potential in comparison to their parent drugs. All the prodrugs were found to be gastro sparing in the rat model and significantly improved the levels of oxidative stress biomarkers in both blood plasma as well as gastric homogenate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call