Abstract

New rapid diagnostic methods are urgently needed to discriminate the quarantine pathogen Ralstonia solanacearum (Rs) race 3 biovar 2 (R3B2) from other populations of Rs that lack the adaptation to cause bacterial wilt disease in temperate regions. We used an in silico bioinformatic approach to identify several genome sequences potentially specific to R3B2 strains. Primer sets were designed to PCR-amplify sequences in these regions, and four sets were ultimately shown to be >99% accurate for detection of R3B2 strains. On the basis of these results, several primers were designed to enable development of a loop-mediated isothermal amplification assay that was rapid, technologically simple, and essentially 100% accurate for identification of R3B2 when applied to a comprehensive collection of geographically diverse Rs strains. We fortuitously found that a sequence in one of the “R3B2-specific” regions has ~90% identity to a sequence present in strains of the blood disease bacterium (BDB), a member of the Rs species complex that infects banana. Alignments of these sequences allowed design of a second PCR primer set that proved 100% accurate for identification of BDB strains when tested on the 22 BDB strains available to us. These results demonstrate the power of in silico genomic subtraction for rapid identification of population-specific DNA sequences and for the development of simple, reliable detection methods for Rs subpopulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.