Abstract

Genome-scale metabolic models have been appearing with increasing frequency and have been employed in a wide range of biotechnological applications as well as in biological studies. With the metabolic model as a platform, engineering strategies have become more systematic and focused, unlike the random shotgun approach used in the past. Here we present the genome-scale metabolic model of the versatile Gram-negative bacterium Pseudomonas putida, which has gained widespread interest for various biotechnological applications. With the construction of the genome-scale metabolic model of P. putida KT2440, PpuMBEL1071, we investigated various characteristics of P. putida, such as its capacity for synthesizing polyhydroxyalkanoates (PHA) and degrading aromatics. Although P. putida has been characterized as a strict aerobic bacterium, the physiological characteristics required to achieve anaerobic survival were investigated. Through analysis of PpuMBEL1071, extended survival of P. putida under anaerobic stress was achieved by introducing the ackA gene from Pseudomonas aeruginosa and Escherichia coli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.