Abstract

Advanced oxidation processes such as thermal plasma activation and UV-C/H2O2 treatment are considered as applications for the degradation of pharmaceutical residues in wastewater complementary to conventional wastewater treatment. It is supposed that direct oxidative treatment can lower the toxicity of hospital sewage water (HSW).The aim of this study was to predict the ecotoxicity for three aquatic species before and after oxidative treatment of 10 quantified pharmaceuticals in hospital sewage water. With the application of oxidative chemistry, pharmaceuticals are degraded into transformation products before reaching complete mineralization. To estimate the potential ecotoxicity for fish, Daphnia and green algae ECOSAR quantitative structure-activity relationship software was used. Structure information from pristine pharmaceuticals and their oxidative transformation products were calculated separately and in a mixture computed to determine the risk quotient (RQ).Calculated mixture toxicities for 10 compounds found in untreated HSW resulted in moderate-high RQ predictions for all three aquatic species. Compared to untreated HSW, 30-min treatment with thermal plasma activation or UV-C/H2O2 resulted in lowered RQs. For the expected transformation products originating from fluoxetine, cyclophosphamide and acetaminophen increased RQs were predicted. Prolongation of thermal plasma oxidation up to 120 min predicted low-moderate toxicity in all target species. It is anticipated that further degradation of oxidative transformation products will end in less toxic aliphatic and carboxylic acid products. Predicted RQs after UV-C/H2O2 treatment turned out to be still moderate-high.In conclusion, in silico extrapolation of experimental findings can provide useful predicted estimates of mixture toxicity. However due to the complex composition of wastewater this in silico approach is a first step to screen for ecotoxicity. It is recommendable to confirm these predictions with ecotoxic bioassays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call