Abstract

BackgroundAn agent-based modeling approach has been suggested as an alternative to traditional, equation-based modeling methods for describing oral drug absorption. It enables researchers to gain a better understanding of the pharmacokinetic (PK) mechanisms of a drug. This project demonstrates that a biomimetic agent-based model can adequately describe the absorption and disposition kinetics both of midazolam and clonazepam.MethodsAn agent-based biomimetic model, in silico drug absorption tract (ISDAT), was built to mimic oral drug absorption in humans. The model consisted of distinct spaces, membranes, and metabolic enzymes, and it was altogether representative of human physiology relating to oral drug absorption. Simulated experiments were run with the model, and the results were compared to the referent data from clinical equivalence trials. Acceptable similarity was verified by pre-specified criteria, which included 1) qualitative visual matching between the clinical and simulated concentration-time profiles, 2) quantitative similarity indices, namely, weighted root mean squared error (RMSE), and weighted mean absolute percentage error (MAPE) and 3) descriptive similarity which requires less than 25% difference between key PK parameters calculated by the clinical and the simulated concentration-time profiles. The model and its parameters were iteratively refined until all similarity criteria were met. Furthermore, simulated PK experiments were conducted to predict bioavailability (F). For better visualization, a graphical user interface for the model was developed and a video is available in Supporting Information.ResultsSimulation results satisfied all three levels of similarity criteria for both drugs. The weighted RMSE was 0.51 and 0.92, and the weighted MAPE was 5.99% and 8.43% for midazolam and clonazepam, respectively. Calculated PK parameter values, including area under the curve (AUC), peak plasma drug concentration (Cmax), time to reach Cmax (Tmax), terminal elimination rate constant (Kel), terminal elimination half life (T1/2), apparent oral clearance (CL/F), and apparent volume of distribution (V/F), were reasonable compared to the referent values. The predicted absolute oral bioavailability (F) was 44% for midazolam (literature reported value, 31–72%) and 93% (literature reported value, ≥ 90%) for clonazepam.ConclusionThe ISDAT met all the pre-specified similarity criteria for both midazolam and clonazepam, and demonstrated its ability to describe absorption kinetics of both drugs. Therefore, the validated ISDAT can be a promising platform for further research into the use of similar in silico models for drug absorption kinetics.

Highlights

  • Oral administration is the most popular and accepted route of delivery for medical drugs

  • An agent-based modeling approach has been suggested as an alternative to traditional, equation-based modeling methods for describing oral drug absorption

  • The model consisted of distinct spaces, membranes, and metabolic enzymes, and it was altogether representative of human physiology relating to oral drug absorption

Read more

Summary

Introduction

Oral administration is the most popular and accepted route of delivery for medical drugs. Within the GI tract, numerous physiological processes influence the rate and extent of drug absorption. Current models for drug absorption: physiologically based pharmacokinetic models. One approach is in vitro–in vivo extrapolation by using physiologically based pharmacokinetic (PBPK) models that represent human intestinal drug absorption. An agent-based modeling approach has been suggested as an alternative to traditional, equation-based modeling methods for describing oral drug absorption. It enables researchers to gain a better understanding of the pharmacokinetic (PK) mechanisms of a drug. This project demonstrates that a biomimetic agent-based model can adequately describe the absorption and disposition kinetics both of midazolam and clonazepam

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call