Abstract

Advanced glycation end products (AGEs) are formed excessively in pathological conditions due to non - enzymatic glycation of proteins, lipids or nucleic acids, affecting their structure and function. Isorhamnetin is a naturally occurring flavonoid with anti-inflammatory, anti-oxidant, anti-obesity, anticancer, anti-diabetic and anti-atherosclerosis activity. Structure activity studies of isorhamnetin reveal the presence of hydroxyl group in the B-ring of isorhamnetin may contribute to antiglycation activity. Hence we hypothised that isorhamnetin may have antiglycation activity owing to its structure as well as antioxidant and free radical scavenging activities by modulating various AGE pathway proteins. The aim of our study was to determine the antiglycation activity of isorhamnetin by targeting various molecular proteins of AGE pathway using insilico docking. The structure of isorhamnetin was imported and drawn in Marvin sketch (version 6. 3. 0). Nearly 17 molecular proteins of AGE pathway were docked with isorhamnetin using autodock tools 4.2 (version 1. 5. 6) software. The present study showed that isorhamnetin exhibited good docking profiles with receptor for advanced glycation End product (RAGE), protein kinase B (PKB/Akt2), activating transcription factor4 (ATF4), cAMP response element-binding protein (CREB), extracellular signal regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3-K) and signal transducer and activator of transcription (STAT) indicating it may exert good antiglycation activity by modulating these proteins of AGE pathways. However further invitro and invivo studies are required to establish the antiglycation activity of isorhamnetin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.