Abstract

The oxygen evolution reaction (OER) is critical to efficient water splitting to produce the H2 fuel for sustainable energy production. Currently, the best non-noble metal OER electrocatalyst in base conditions is the Fe-doped NiOOH (Ni1- xFe xOOH), with an overpotential of η = 0.4, but much lower values are desired. We use density functional theory to determine the overall mechanism for the OER of Ni1- xFe xOOH, concluding that promoting radical character on the metal-oxo bond is critical to efficient OER. Then we consider replacing Fe with 17 other transition metals of the Fe, Ru, and Os rows, where we find 3 new promising candidates: Co, Rh, and Ir, which we estimate to have η = 0.27, 0.15, and 0.02, respectively, all very much improved performance compared to Fe, making all three systems excellent candidates for experimental testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.