Abstract

Vibriosis is caused by Vibrio anguillarum in various species of aquaculture. A novel, secure, and stable vaccine is needed to eradicate vibriosis. Here, for reverse vaccinology and plant-based expression, the outer membrane protein K (OmpK) of V. anguillarum was chosen due to its conserved nature in all Vibrio species. OmpK, an ideal vaccine candidate against vibriosis, demonstrated immunogenic, non-allergic, and non-toxic behavior by using various bioinformatics tools. Docking showed the interaction of the OmpK model with TLR-5. In comparison to costly platforms, plants can be used as alternative and economic bio-factories to produce vaccine antigens. We expressed OmpK antigen in Nicotiana tabacum using Agrobacterium-mediated transformation. The expression vector was constructed using Gateway® cloning. Transgene integration was verified by polymerase chain reaction (PCR), and the copy number via qRT-PCR, which showed two copies of transgenes. Western blotting detected monomeric form of OmpK protein. The total soluble protein (TSP) fraction of OmpK was equivalent to 0.38% as detected by ELISA. Mice and fish were immunized with plant-derived OmpK antigen, which showed a significantly high level of anti-OmpK antibodies. The present study is the first report of OmpK antigen expression in higher plants for the potential use as vaccine in aquaculture against vibriosis, which could provide protection against multiple Vibrio species due to the conserved nature OmpK antigen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.