Abstract
Microtubules are polymeric structures formed by the self-assembly of tubulin dimers. The growth and shrinkage of these dynamic arrays have a key role during the cell-proliferation process. This makes tubulin the molecular target of many anticancer drugs currently in use or under clinical trial. Their impressive success is limited by the onset of resistant tumour cells during the treatment, so new resistance-proof molecules need to be developed. Here we use molecular dynamics and free-energy calculations to study the network of interactions that allow microtubule formation. Modelling the protein-protein interface allows us to identify the amino acids responsible for tubulin-tubulin binding and thus to design peptides, which correspond to tubulin subsequences, that interfere with microtubule formation. We show that the application of molecular modelling techniques leads to the identification of peptides that exhibit antitubulin activity both in vitro and in cultured cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.