Abstract
Inhibition data on rat monoamine oxidase B isoform of a large number of 7-metahalobenzyloxy-2H-chromen-2-one derivatives (67 compounds) carrying at position 4 a variety of substituents differing in steric, electrostatic, lipophilic and H-bonding properties, were modeled by Gaussian field-based 3D-QSAR and docking simulations carried out on rat MAO-B homology model. The computational study combining two different approaches provided easily interpretable binding modes, highlighting the dominant role of the steric effects at position 4, and guided the design of new, potent and selective MAO-B inhibitors. The 4-hydroxyethyl-, 4-chloroethyl-, 4-carboxamidoethyl-coumarin derivatives 70, 71, and 76, respectively, were endowed with high MAO-B inhibitory potency (pIC50=8.13, 7.89 and 7.82, respectively) and good selectivity over MAO-A (pIC50=5.33, 3% inhibition at 10μM, and pIC50=5.37, respectively). New compounds with moderate to low MAO-B inhibitory activity were also designed and prepared to challenge the predictive power of our docking-based 3D-QSAR model. The good match between predicted and experimental pIC50 values for all the newly designed compounds confirmed the robustness of our model (r(2)=0.856, RMSE=0.421) and its transparent rationale in unveiling the main molecular determinants for high potency towards MAO-B.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.