Abstract
A mechanistic density functional theory study of acetylene [2+2+2] cyclotrimerization to benzene catalyzed by Rh(I) half metallocenes is presented. The catalyst fragment contains a heteroaromatic ligand, that is, the 1,2-azaborolyl (Ab) or the 3a,7a-azaborindenyl (Abi) anions, which are isostructural and isoelectronic to the hydrocarbon cyclopentadienyl (Cp) and indenyl (Ind) anions, respectively, but differ from the last ones on having two adjacent carbon atoms replaced with a boron and a nitrogen atom. The better performance of either the classic hydrocarbon or the heteroaromatic catalysts is found to depend on the different mechanistic paths that can be envisioned for the process. The present analyses uncover and explain general structure-reactivity relationships that may serve as rational design principles. In particular, we provide evidence of a reverse indenyl effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.