Abstract

A mutant of P450(cam), in which the cysteine ligand was replaced by selenocysteine, was designed theoretically using hybrid QM/MM (quantum mechanical/molecular mechanical) calculations. The calculations of the active species, Se-CpdI (selenocysteine-Compound I), of the mutant enzyme indicate that Se-Cpd I will be formed faster than the wild-type species and be consumed more slowly in C-H hydroxylation. As such, our calculations suggest that Se-Cpd I can be observed unlike the elusive species of the wild-type enzyme (Denisov, I. G.; Makris, T. M.; Sligar, S. G.; Schlichting, I. Chem. Rev. 2005, 105, 2253-2277). Spectral features of Se-Cpd I were calculated and may assist such eventual characterization. The observation of Se-Cpd I will resolve the major puzzle in the catalytic cycle of a key enzyme in nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.