Abstract

Small regulatory RNAs (sRNAs) are short non-coding RNAs in bacteria capable of post-transcriptional regulation. sRNAs have recently gained attention as tools in basic and applied sciences, for example, to fine-tune genetic circuits or biotechnological processes. Even though sRNAs often have a rather simple and modular structure, the design of functional synthetic sRNAs is not necessarily trivial. This protocol outlines how to use computational predictions and synthetic biology approaches to design, construct, and validate synthetic sRNA functionality for their application in bacteria. The computational tool, SEEDling, matches the optimal seed region with the user-selected sRNA scaffold for repression of target mRNAs. The synthetic sRNAs are assembled using Golden Gate cloning and their functionality is subsequently validated. The protocol uses the acrA mRNA as an exemplary proof-of-concept target in Escherichia coli. Since AcrA is part of a multidrug efflux pump, acrA repression can be revealed by assessing oxacillin susceptibility in a phenotypic screen. However, in case target repression does not result in a screenable phenotype, an alternative validation of synthetic sRNA functionality based on a fluorescence reporter is described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.