Abstract

AbstractNovel oral anticoagulants are frequently used for the pharmacotherapy of thromboembolic disorders but still have drawbacks and side effects. While numerous synthetic and semisynthetic derivatives of nontoxic isosteviol possess potential therapeutic properties, including anticoagulant activity. Besides, thiourea is recognized in medicinal chemistry research as a component of a common framework of many drugs or bioactive compounds. The present work combines molecular modeling and docking approach for searching and designing novel thiourea isosteviol-based compounds as potential FXa inhibitors. Elaborated regression model well reflects the relationships between experimentally determined anticoagulant activity and molecular descriptors and may be used for the prediction of FXa inhibitory activity of novel thiourea isosteviol compounds. Among 20 descriptors incorporated into the ANN model, 60% are 2D topological descriptors, 25% describe three-dimensional molecular structure, and remaining 15% belong to constitutional descriptors. Additionally, docking simulation confirms the prominent binding of the newly in silico designed molecules with the active sites of the protein, which may be the lead molecules and can be further optimized for the efficient pharmacodynamic and pharmacokinetic profiles. Based on the results obtained, thiourea derivatives of isosteviol with 3-chloro-4-fluorophenyl, 3-fluoro-4-chlorophenyl or 4-(oxazol-5-yl)phenyl substituent may be promising FXa inhibitors. Findings reported in the present work can be used as valuable information for the development of anticoagulants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call