Abstract

Fluorescent imaging in vivo has became one of the most powerful tools to follow the temporal and spatial localization of a variety of intracellular molecular events. Genetically encoded fluorescent indicators using the FRET effect are routinely used although the molecular basis regulating their functioning is not completely known. Here, the structural and dynamics properties of a commonly used FRET sensor for the second messenger cAMP based on the cAMP-binding domains of the regulatory subunit of Protein Kinase A are presented. Molecular dynamics simulations allowed pinpointing the main features of cAMP driven conformational transition and dissecting the contributions of geometric factors governing the functioning of the biosensor. Simulations suggest that, although orientational factors are not fully isotropic, they are highly dynamic making the inter-chromophore distance the dominant feature, determining the functioning of the probes. It is expected that this computer-aided methodology may state general basis for rational design strategies of fluorescent markers for in vivo imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.