Abstract

Lectins are a family of proteins that can recognize and bind specific carbohydrates. Plant lectins play various roles in plant defense and can be utilized as insecticidal, antibacterial, antifungal, and antiviral agents. This study compares genes, proteins, and carbohydrate-binding motifs between 15 plant lectins using in silico methods. The lectin genes of Artocarpus hypargyreus Hance, Hordeum vulgare var. Betzes, Triticum aestivum L. cv. Marshall, Galanthus nivalis L., Allium sativum L., Phaseolus vulgaris, Lens culinaris subsp. tomentosus, Robinia pseudoacacia, Glycine max, Cicer arietinum, Pisum sativum, Canavalia ensiformis, Amaranthus caudatus, Amaranthus hypochondriacus, and Musa acuminata subsp. malaccensis were obtained from National Center for Biotechnology Information and Banana Genome Hub. The gene comparison results revealed different characteristics of the 15 plant lectin genes, with A. hypargyreus having the shortest lectin gene and G. max having the longest. Overall, the 15 plant lectin genes have 1–3 exons. Domain predictions revealed the presence of five domains: jacalin, chitin_bind_1, B_lectin, legume lectin, and agglutinin. Furthermore, there were 2 protein sequences from the jacalin domain, 2 protein sequences from the chitin_bind_I domain, 2 protein sequences from the B_lectin domain, and 4 protein sequences from the legume lectin domains that have complete carbohydrate-binding motifs compared to consensus motifs from literature. The data obtained from this study has not been previously reported and can be utilized for future lectin protein production with synthetic biology approaches. This method will allow scientists to obtain plant bioparts for lectin production using a heterologous system, even without plant samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.