Abstract
Two-component signal transduction systems (TCS) are important elements in the interaction of endobacteria with host cells. They are basically composed of two proteins, an environmental signal sensor and a response regulator, which activate genes involved in a wide range of bacterial responses to their environment. We analyzed three sets of genes corresponding to TCS of Ehrlichia canis, a common tick-borne canine pathogen and the etiologic agent of canine monocytic ehrlichiosis, in order to identify the characteristic domains of the sensor and response regulator components. Analysis of sequence alignments of the corresponding proteins indicated a high degree of similarity to other members of the Anaplasmataceae TCS proteins, demonstrating that they could be useful as universal targets for development of new drugs against these bacteria. We also evaluated by quantitative PCR inhibition of E. canis by (2H)-1,4-benzoxazin-3(4H)-one (BOA), the core compound of the plant phenolic compound DIMBOA, which shows inhibitory action against TCS of the phytopathogen Agrobacterium tumefasciens. This bacterium exerts its pathogenicity by transferring oncogenic DNA (T-DNA) into plant cells; this transfer is mediated through a type-IV secretion system, which is regulated by the VirA/VirG TCS. The process of infection and pathogenesis of E. canis is associated with the secretion of effector proteins into the host cell cytoplasm through a T4SS system, which blocks the cell defense response. We suggest that BOA, and possibly other plant phenolic compounds that are TCS inhibitors, can be exploited in the search for new antiehrlichial drugs to be used alone or as complements in the treatment of canine monocytic ehrlichiosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.