Abstract

Bacterial true lipases having thermo and alkaline stability are highly attractive for their industrial production of pharmaceuticals, agrochemicals, cosmetics, and flavour. Staphylococcus aureus lipase (SAL3) remains active at temperatures 40-60°C, with an optimum temperature of 55°C and an optimum pH of 9.5 stable over a range of 5-12. Detailed understanding of the structure and insight into the activity of such lipase would aid in engineering lipases that would function in the desired extreme industrial environments. In the present study, we carried out in silico characterization and structural modeling of SAL3 which is thermoactive, alkaline and detergent-stable. Comparison of SAL3 with other staphylococcal lipases indicates that SAL3 is a true lipase having the catalytic triad (residues Ser119, Asp310 & His352) and the calcium binding site (residues Asp351, Asp354, Asp359, Asp362 and Gly286). Conservation in sequence implies that interfacial activation mechanism is possible in SAL3 with the lid formed by helix (residues 180-196) and loop (residues 197-206). Three dimensional (3D) structure model of SAL3 has been predicted for the first time and aims at understanding its function and biochemical characteristics of possessing relatively high thermal and pH stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call