Abstract

β-carotene is an important nutritious content in banana. However, its lifetime depends on the enzymes controlling its conversion into strigolactone. To understand the involved enzymes’ activity, which are β-carotene isomerase (D27), carotenoid cleavage dioxygenase 7 (CCD7), and CCD8, would be the key to manipulate the rate of β-carotene degradation. In this research, we characterized the structure of genes and proteins of the D27, CCD7, and CCD8 from Musa acuminata ‘DH-Pahang’ and Musa balbisiana ‘Pisang Klutuk Wulung’ (PKW). We aligned the corresponding sequence of genes from both species to determine similarity and intron/exon positions. We also identified domains and motifs in the sequences of putative proteins of D27, CCD7, and CCD8. We found that D27, CCD7, and CCD8 genes in DH-Pahang and PKW comprise of various nucleotide sequence length, putative proteins, and numbers and length of exons and introns. However, the putative proteins possess the same domains: DUF4033 (domain of unknown function) in D27 and RPE65 (retinal pigment epithelium) in CCD7 and CCD8. Phylogenetic trees showed that D27, CCD7, and CCD8 proteins from DH-Pahang and PKW are conserved and clustered in the same clades with the same proteins of monocot plants. Hence, the results could be useful for future research in optimizing β-carotene content in banana.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call