Abstract
Fructosyl peptide oxidase (FPOX) enzyme from Eupenicillium terrenum has a high potential to be applied as a diagnostic enzyme. The aim of the present study is the characterization of FPOX from E. terrenum using different bioinformatics tools. The computational prediction of the RNA and protein secondary structures of FPOX, solubility profile in Escherichia coli, stability, domains, and functional properties were performed. In the FPOX protein, six motifs were detected. The d-amino acid oxidase motif was found as the most important motif that is a FAD-dependent oxidoreductase. The cysteines including 97, 154, 234, 280, and 360 showed a lower score than -10 that have a low possibility for participitation in the formation of the SS bond. The 56.52% of FPOX amino acids are nonpolar. Random coils are dominant in the FPOX sequence, followed by alpha-helix and extended strand. The fpox gene is capable of generating a stable RNA secondary structure (-423.90 kcal/mol) in E. coli. FPOX has a large number of hydrophobic amino acids. FPOX showed a low solubility in E. coli which has several aggregation-prone sites in its 3-D structure. According to the scores, the best mutation candidate for increasing solubility was the conversion of methionine 302 to arginine. The melting temperature of FPOX based on its amino acid sequence was 55°C to 65°C. The amounts of thermodynamic parameters for the FPOX enzyme were -137.4 kcal/mol, -3.59 kcal/(mol K), and -6.8 kcal/mol for standard folding enthalpy, heat capacity, and folding free energy, respectively. In conclusion, the in silico study of proteins can provide a valuable method for better understanding the protein properties and functions for use in our purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.