Abstract
Typhoid fever is an acute illness in humans, caused by Salmonella typhi, a gram-negative bacterium. Outer membrane proteins of S. typhi have strong potential for its use in the development of subunit vaccine against typhoid. In the current study, peptide-based subunit vaccine was constructed from outer membrane protease E (PgtE) against S. typhi. B cell and T cell epitopes were identified at fold level with a validated three-dimensional modeled structure. T cell epitopes from PgtE (IHPDTSANY) have 99.5% binding to a maximum number of major histocompatibility complex class I and class II alleles. They also bind to the typhoid-resistant human leukocyte antigen (HLA) alleles DRB1*0401. PgtE epitopes were docked with HLA-DR4 (PDB ID: 1D5M) and a contact map was constructed. A simulation search for the binding site for full flexibility of the peptide from CABS- (Cα, Cβ, side-chain)-dock shows stable interactions. Molecular dynamics simulation studies revealed that the PgtE-epitope complex structure was more stable throughout the simulation (20 ns) and interaction did not change the radius of gyration. In conclusion, computational analysis, molecular docking, and molecular dynamics (MD) simulation of PgtE-epitope complex were used to elucidate the binding mode, and the dynamical changes of epitopes were more suitable for vaccine development against typhoid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.