Abstract
Actinobacillus pleuropneumoniae is a causative agent of pleuropneumonia in pigs of all ages. A . pleuropneumoniae is divided into 19 serovars based on capsular polysaccharides (CPSs) and lipopolysaccharides. The serovars of isolates are commonly determined by serological tests and multiplex PCR. This study aimed to develop a genomic approach for in silico A. pleuropneumoniae typing by screening for the presence of the species-specific apxIV gene in whole-genome sequencing (WGS) reads and identifying capsule locus (KL) types in genome assemblies. A database of the A . pleuropneumoniae KL, including CPS synthesis and CPS export genes, was established and optimized for Kaptive. To test the developed genomic approach, WGS reads of 189 A . pleuropneumoniae isolates and those of 66 samples from 14 other bacterial species were analysed. ariba analysis showed that apxIV was detected in all 189 A . pleuropneumoniae samples. These apxIV-positive WGS reads were de novo assembled into genome assemblies and assessed. A total of 105 A . pleuropneumoniae genome assemblies that passed the quality assessment were analysed by Kaptive analysis against the A . pleuropneumoniae KL database. The results showed that 97 assemblies were classified and predicted as 13 serovars, which matched the serovar information obtained from the literature. The six genome assemblies from previously nontypable isolates were typed and predicted as serovars 17 and 18. Notably, one of the two “Actinobacillus porcitonsillarum” samples was apxIV positive, and its genome assembly was typed as KL03 with high identity and predicted as A . pleuropneumoniae serovar 3. Collectively, a genomic approach was established and could accurately determine the KL type of A . pleuropneumoniae isolates using WGS reads. This approach can be used with high-quality genome assemblies for predicting A . pleuropneumoniae serovars and for retrospective analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.