Abstract

BackgroundCell penetrating peptides have gained much recognition as a versatile transport vehicle for the intracellular delivery of wide range of cargoes (i.e. oligonucelotides, small molecules, proteins, etc.), that otherwise lack bioavailability, thus offering great potential as future therapeutics. Keeping in mind the therapeutic importance of these peptides, we have developed in silico methods for the prediction of cell penetrating peptides, which can be used for rapid screening of such peptides prior to their synthesis.MethodsIn the present study, support vector machine (SVM)-based models have been developed for predicting and designing highly effective cell penetrating peptides. Various features like amino acid composition, dipeptide composition, binary profile of patterns, and physicochemical properties have been used as input features. The main dataset used in this study consists of 708 peptides. In addition, we have identified various motifs in cell penetrating peptides, and used these motifs for developing a hybrid prediction model. Performance of our method was evaluated on an independent dataset and also compared with that of the existing methods.ResultsIn cell penetrating peptides, certain residues (e.g. Arg, Lys, Pro, Trp, Leu, and Ala) are preferred at specific locations. Thus, it was possible to discriminate cell-penetrating peptides from non-cell penetrating peptides based on amino acid composition. All models were evaluated using five-fold cross-validation technique. We have achieved a maximum accuracy of 97.40% using the hybrid model that combines motif information and binary profile of the peptides. On independent dataset, we achieved maximum accuracy of 81.31% with MCC of 0.63.ConclusionThe present study demonstrates that features like amino acid composition, binary profile of patterns and motifs, can be used to train an SVM classifier that can predict cell penetrating peptides with higher accuracy. The hybrid model described in this study achieved more accuracy than the previous methods and thus may complement the existing methods. Based on the above study, a user- friendly web server CellPPD has been developed to help the biologists, where a user can predict and design CPPs with much ease. CellPPD web server is freely accessible at http://crdd.osdd.net/raghava/cellppd/.

Highlights

  • Cell penetrating peptides have gained much recognition as a versatile transport vehicle for the intracellular delivery of wide range of cargoes, that otherwise lack bioavailability, offering great potential as future therapeutics

  • Amino acid composition analysis of Cell penetrating peptides (CPP) In order to understand whether certain types of amino acids are dominated in CPPs, overall percent average composition of amino acids in CPPs and non-CPPs has been calculated and compared (Figure 1a)

  • Analysis revealed that Arg, Lys, and Trp were significantly abundant in CPPs, while composition of Pro and Cys were slightly higher in CPPs than non-CPPs (Figure 1a)

Read more

Summary

Introduction

Cell penetrating peptides have gained much recognition as a versatile transport vehicle for the intracellular delivery of wide range of cargoes (i.e. oligonucelotides, small molecules, proteins, etc.), that otherwise lack bioavailability, offering great potential as future therapeutics. Keeping in mind the therapeutic importance of these peptides, we have developed in silico methods for the prediction of cell penetrating peptides, which can be used for rapid screening of such peptides prior to their synthesis. Poor delivery and low bioavailability of therapeutic molecules are the two main obstacles in the drug development process. Short peptides known as cell penetrating peptides (CPPs) or protein transduction domains (PTDs) have gained much recognition as an efficient delivery vehicle [3]. CPPs have a great therapeutic potential, especially in drug delivery. Two routes of internalization have been proposed that include direct penetration and endocytic pathway [16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call