Abstract
The manuscript deals with cost-effective synthesis, structural characterization and in silico SARS-CoV-2 screening activity of 5-membered heterocycle-substituted benzimidazole derivatives, 1-((1H-pyrrol-2-yl)methyl)-2-(1H-pyrrol-2-yl)-1H-benzo[d]imidazole (L1), 2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzo[d]imidazole (L2), 2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzo[d]imidazole (L3). The benzimidazole compounds were synthesized through a green-synthetic approach by coupling of 5-membered heterocyclic-carboxaldehyde and o-phenylenediamine in water under an aerobic condition. The compounds were characterized by various spectroscopic methods and X-ray structural analysis. The suitable single-crystals of the methyl derivative of L3 were grown as L3′ which crystallized in a monoclinic system and the thiophene groups co-existed in a nearly a perpendicular orientation. Further, in silico anti-SARS-CoV-2 proficiency of the synthetic derivatives is evaluated against main protease (Mpro) and non-structural proteins (nsp2 and nsp7) of SARS-CoV-2. Molecular docking and molecular dynamics analysis of the ligands (L1-L3) against Mpro and nsp2 and nsp7 for 50 ns reveal that L3 turns out to be the superlative antiviral candidate against Mpro, nsp2 and nsp7 of SARS-CoV-2 as evident from the binding score and stability of the ligand-docked complexes with considerable binding energy changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.