Abstract
This study emphasizes the explorations of binding of Prima-1MET with two targets, p53 a tumor suppressor protein, and tyrosine kinase of epidermal growth factor receptor. In silico investigations reveal that Prima-1MET showed robust binding with both targets. Molecular docking simulations demonstrated the binding affinity of Prima-1MET with p53 and tyrosine kinase was found to be −38.601 kJ/mol and −38.976 kJ/mol. In addition, the stability of Prima-1MET was explored by molecular dynamics simulation. Prima-1MET attains stability in the binding site of the respective protein till the simulation period is over. Moreover, the free binding energy ΔG bind was calculated by the molecular mechanics Poisson Boltzmann surface area method. The ΔG bind of Prima-1MET with tyrosine kinase was found to be −58.585 ± 0.327 kJ/mol and with p53 it was −35.910 ± 0.335 kJ/mol. Next, cytotoxicity of the Prima-1MET was evaluated using multiple cancer cell lines and the IC50 value were ranging between 4.5 and 30 μM. The cell death was identified by apoptosis assay. Further, the p53 and tyrosine kinase expression was monitored using immunofluorescence techniques, it was found Prima-1MET induces the expression of p53 protein and mimics the level of tyrosine kinase oncogenic target. Also, reactive oxygen species (ROS) and membrane potential activity of Prima-1MET was evaluated by using a lung cancer cell line. A significant decrease in intracellular ROS was observed and resulted in disruption of mitochondrial transmembrane potential. This study uncovers the underlying mechanism of Prima-1MET and could be helpful to design further leads against lung cancers. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.