Abstract

Cell-penetrating peptides (CPPs) attracted great attention because of the capability to deliver various types of cargo molecules across into the cells. In this study, we presented a new arginine rich CPP, named MR, for efficient transporting plasmid DNA. We used a combined bioinformatic-based approach to improve the speed and accuracy of CPP evaluation. MR protein properties, structural models, interaction with DNA, as well as cell localization and membrane interaction were evaluated through multiple servers. Importantly, analysis using different algorithms showed the high CPP prediction confidence of MR. Experimental results also revealed the capacity of this gene delivery system in vitro for efficient plasmid DNA transfection. Additionally, in vitro mechanistically studies together with bioinformatic investigation suggested that MR peptide may internalize into the cell through endocytosis pathways. Moreover, in silico safety analysis such as immunogenicity, allergenicity, toxicity, and hemolysis activity as well as MTT assay also confirmed the safety of MR peptide. This study illustrated that MR peptide could be presented as remarkable potential gene delivery system for promising transport of plasmid DNA towards the therapeutic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.