Abstract
AbstractThe impact of transmural infarctions of the left ventricle on the cardiac mechanical dynamics is evaluated for all 17 AHA segments in a computer model. The simulation framework consists of two parts: an electrophysiological model and an elastomechanical model of the ventricles. The electrophysiological model is used to simulate the electrophysiological processes on cellular level, excitation propagation and the tension development. It is linked to the elastomechanical model, which is based on nonlinear finite element analysis for continuum mechanics. Altogether, 18 simulations of the contraction of the ventricles were performed, 17 with an infarction in the respective AHA segment and one simulation for the control case. For each simulation, the mechanical dynamics as well as the wall thickening of the infarct region were analyzed and compared to the corresponding region of the control case. The simulation revealed details of the impact of the myocardial infarction on wall thickening as well as on the velocity of the infarct region for most of the AHA segments.KeywordsMyocardial InfarctionHeart ModelingFinite Element Analysis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.