Abstract

Background Numerous pharmacological activities have been reportedin Mikania species. In the present investigation, we aimed to evaluate 26 selected constituents of Mikania as potent inhibitory agents of human HMG-CoA reductase (hHMGR), human inducible nitric oxide synthase (hiNOS), and human squalene synthase (hSQS) using the in silico method. Methodology Twenty-six selected constituents of Mikania were investigated based on the docking behavior of three target enzymes, namely hHMGR, hiNOS, and hSQS, using the Cdocker method (Discovery Studio® 3.1, Accelrys, Inc., San Diego, CA). Results Docking analysis showed that methyl-3,5-di-O-caffeoyl quinate (MCQ) has the maximum binding energy (BE) (-39.63, -50.65, and -58.56 kcal/mol) with hHMGR, hiNOS, and hSQS enzymes. On the other hand, six ligands (kaurenoic acid (KAA), stigmasterol (SS), grandifloric acid (GA), kaurenol (KA), spathlenol (SP), and taraxerol (TA)) of Mikania failed to dock with either of the targetenzymes (hHMGR, hiNOS, or hSQS). Conclusions The findings of the current study provide new insight regarding 26 selected ligands of Mikania as potent inhibitory agents of hHMGR, hiNOS, and hSQS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.