Abstract

Globally, cervical cancer is the fourth most common cancer among women. After being cloned from a recurring cervical lesion in 1987, Human papillomavirus (HPV) type-45 was identified as a high-risk HPV type. It is the third most common cancer-causing HPV subtype, after HPV-16 and HPV-18. Immunogenic epitopes and structural features provide the most useful information for vaccine development. Computational algorithms provide quick, simple, trustworthy, and cost-efficient methods for predicting immunogenic epitopes. In this study, both B and T cell epitopes have been identified as potential immunogens that can elicit a response from the host system. Three potential B-cell epitopes, i.e., SIAGQYRGQCNTCCDQ, LQEIVLHLEPQNELDP, and DSTVYLPPPSVARVVS, were identified in this study. A potential epitope for E6 (ATLERTEVY) was predicted to 8 MHC-I alleles (HLA-A*30:02, HLA-B*15:01, HLA-A*01:01, HLA-A*26:01, HLA-A*32:01, HLA-B*35:01, HLA-B*58:01, HLA-A*11:01) and for L1 epitope (NVFPIFLQM) was predicted for 4 MHC-I alleles (HLA-A*30:02, HLA-A*32:01, HLA-B*53:01, HLA-B*51:01). To conclude, the epitopes identified here might potentially be useful for developing a cervical cancer vaccine against HPV-45 strains, but in vitro and in vivo trials are needed to validate their safety and efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call