Abstract

Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1) that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons.

Highlights

  • Color and pattern variation within, and across, species provide a unique opportunity to investigate the genetic basis of evolution and selection

  • We describe a novel application of bioinformatics to infer conserved cellular genetic programs in melanocyte biology based on comparative genomics, supervised literature mining, and regulatory motif analysis resulting in the identification of 27 candidate enhancer modules, within 9 orthologs of mammalian pigmentation genes likely to contribute to pigmentation and pattern phenotypes in pythons

  • Our results focused on a set of 6 transcription factors that have been previously demonstrated to modulate melanocyte and pigmentation in mammals

Read more

Summary

Introduction

Color and pattern variation within, and across, species provide a unique opportunity to investigate the genetic basis of evolution and selection. Pigmentation variation in snakes and lizards serves a variety of ecological roles. Pigmentation patterns on dorsal surfaces can provide camouflage from visual predators, such as birds. Pigmentation can provide warnings to potential predators regarding specific toxins or venoms. Sexually dimorphic pigmentation may facilitate communication among conspecifics relating to reproduction and territorial control [1]. The mouse has been the most studied organism in the dissection of genes modulating coat color and pattern

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call