Abstract

BackgroundSmall RNAs (sRNAs) are short non-coding RNA molecules (20–30 nt) that regulate gene expression at transcriptional or post-transcriptional levels in many eukaryotic organisms, through a mechanism known as RNA interference (RNAi). Recent studies have highlighted that they are also involved in cross-kingdom communication: sRNAs can move across the contact surfaces from “donor” to “receiver” organisms and, once in the host cells of the receiver, they can target specific mRNAs, leading to a modulation of host metabolic pathways and defense responses. Very little is known about RNAi mechanism and sRNAs occurrence in Arbuscular Mycorrhizal Fungi (AMF), an important component of the plant root microbiota that provide several benefits to host plants, such as improved mineral uptake and tolerance to biotic and abiotic stress.ResultsTaking advantage of the available genomic resources for the AMF Rhizophagus irregularis we described its putative RNAi machinery, which is characterized by a single Dicer-like (DCL) gene and an unusual expansion of Argonaute-like (AGO-like) and RNA-dependent RNA polymerase (RdRp) gene families. In silico investigations of previously published transcriptomic data and experimental assays carried out in this work provided evidence of gene expression for most of the identified sequences. Focusing on the symbiosis between R. irregularis and the model plant Medicago truncatula, we characterized the fungal sRNA population, highlighting the occurrence of an active sRNA-generating pathway and the presence of microRNA-like sequences. In silico analyses, supported by host plant degradome data, revealed that several fungal sRNAs have the potential to target M. truncatula transcripts, including some specific mRNA already shown to be modulated in roots upon AMF colonization.ConclusionsThe identification of RNAi-related genes, together with the characterization of the sRNAs population, suggest that R. irregularis is equipped with a functional sRNA-generating pathway. Moreover, the in silico analysis predicted 237 plant transcripts as putative targets of specific fungal sRNAs suggesting that cross-kingdom post-transcriptional gene silencing may occur during AMF colonization.

Highlights

  • Small RNAs are short non-coding RNA molecules (20–30 nt) that regulate gene expression at transcriptional or post-transcriptional levels in many eukaryotic organisms, through a mechanism known as RNA interference (RNAi)

  • RNAi machinery in R. irregularis A survey of recently published genomic resources of the Arbuscular Mycorrhizal Fungi (AMF) R. irregularis [40] was performed to identify proteins belonging to the core eukaryotic RNAi machinery: Dicer-like (DCL), AGO and RNA-dependent RNA polymerase (RdRp) [13]

  • A blastp search on the predicted R. irregularis proteome, using characterized DCL, AGO and RdRp from other fungi as queries, resulted in the same number of sequences obtained by keywords searches

Read more

Summary

Introduction

Small RNAs (sRNAs) are short non-coding RNA molecules (20–30 nt) that regulate gene expression at transcriptional or post-transcriptional levels in many eukaryotic organisms, through a mechanism known as RNA interference (RNAi). Very little is known about RNAi mechanism and sRNAs occurrence in Arbuscular Mycorrhizal Fungi (AMF), an important component of the plant root microbiota that provide several benefits to host plants, such as improved mineral uptake and tolerance to biotic and abiotic stress. A long history of co-evolution characterizes this unique plant-fungus association where the typical highly branched fungal structures (arbuscules), which develop inside cortical cells, represent a clear sign of the occurrence of fine-tuned regulatory circuits in both partners Such an intimate colonization of plant tissues relies on an efficient molecular communication system, which occurs before the contact, and on extensive structural and metabolic rearrangements on both plant and fungal sides, which have been only partially described [2, 4]. Investigations on transcript profiles have been performed to a lower extent on the AMF [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call