Abstract
MATE genes play an important role in cellular detoxification processes. Nine MATE genes were identified by a transcriptomics study previously. Candidate gene prioritization was done where 29 new genes were found to interact with 09 guide genes. Therefore, a total of 38 genes were analyzed here to predict a concise model by gene prioritization study. Those genes were analyzed further in Rice Interactions Viewer programme, and based on high ICV, 10 new genes were found to interact among themselves at protein level. Surprisingly, only 05 genes were found to play a key role at protein level. These 15 genes were analyzed for their interaction with soil available inorganic arsenic species. Maximum expression levels were found mostly at young inflorescence and seed development stage for those genes. So, these genes may have a direct role in arsenic sequestration from cells and thereby providing safety to the developing embryo within the seed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.