Abstract

BackgroundIdentification of specific biological functions, pathways, and appropriate prognostic biomarkers is essential to accurately predict the clinical outcomes of and apply efficient treatment for breast cancer patients.MethodsTo search for metastatic breast cancer-specific biological functions, pathways, and novel biomarkers in breast cancer, gene expression datasets of metastatic breast cancer were obtained from Oncomine, an online data mining platform. Over- and under-expressed genesets were collected and the differentially expressed genes were screened from four datasets with large sample sizes (N > 200). They were analyzed for gene ontology (GO), KEGG pathway, protein-protein interaction, and hub gene analyses using online bioinformatic tools (Enrichr, STRING, and Cytoscape) to find enriched functions and pathways in metastatic breast cancer. To identify novel prognostic biomarkers in breast cancer, differentially expressed genes were screened from the entire twelve datasets with any sample sizes and tested for expression correlation and survival analyses using online tools such as KM plotter and bc-GenExMiner.ResultsCompared to non-metastatic breast cancer, 193 and 144 genes were differentially over- and under-expressed in metastatic breast cancer, respectively, and they were significantly enriched in regulating cell death, epidermal growth factor receptor signaling, and membrane and cytoskeletal structures according to the GO analyses. In addition, genes involved in progesterone- and estrogen-related signalings were enriched according to KEGG pathway analyses. Hub genes were identified via protein-protein interaction network analysis. Moreover, four differentially over-expressed (CCNA2, CENPN, DEPDC1, and TTK) and three differentially under-expressed genes (ABAT, LRIG1, and PGR) were further identified as novel biomarker candidate genes from the entire twelve datasets. Over- and under-expressed biomarker candidate genes were positively and negatively correlated with the aggressive and metastatic nature of breast cancer and were associated with poor and good prognosis of breast cancer patients, respectively.ConclusionsTranscriptome datasets of metastatic breast cancer obtained from Oncomine allow the identification of metastatic breast cancer-specific biological functions, pathways, and novel biomarkers to predict clinical outcomes of breast cancer patients. Further functional studies are needed to warrant validation of their roles as functional tumor-promoting or tumor-suppressing genes.

Highlights

  • Identification of specific biological functions, pathways, and appropriate prognostic biomarkers is essential to accurately predict the clinical outcomes of and apply efficient treatment for breast cancer patients

  • 193 and 144 genesets were differentially over-expressed (DOE-L) and underexpressed (DUE-L), respectively. These genesets were subjected to gene ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, proteinprotein interaction network analysis, and hub gene analyses to search for metastatic breast cancer (MBC)-enriched genes, biological functions, and pathways

  • We identified differentially over-expressed (DOE-L) and under-expressed (DUE-L) genes in metastatic breast cancer (MBC) by utilizing the Oncomine database (Tables S1 and S2)

Read more

Summary

Introduction

Identification of specific biological functions, pathways, and appropriate prognostic biomarkers is essential to accurately predict the clinical outcomes of and apply efficient treatment for breast cancer patients. Identification of novel biomarkers in breast cancer is critical for accurate prognosis analysis and therapeutic efficacy prediction. [7,8,9,10,11,12,13,14] and in the past, numbers of bioinformatic analyses have been conducted to identify key differentially expressed genes and enriched biological pathways or to evaluate the expression of a few specific genes in breast cancers, but such analysis using transcriptomes of MBCs has not been satisfactorily performed. The identification of biological functions and pathways enriched in MBCs is pivotal to search for appropriate treatment options that would minimize the adverse effects and increase the survival rates of this fatal disease

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call