Abstract

BackgroundThe recombinant human truncated Keratinocyte growth factor (Palifermin) is the only FDA approved medicine for the treatment of oral mucositis. The Keratinocyte growth factor is a fairly unstable protein due to its high aggregation propensity and therefore its expression as a secretory protein may results in the production of a protein with more stability, higher solubility, better folding, enhanced biological activity, N-terminal authenticity and simplified downstream processing. ObjectiveThe aim of this study was in silico evaluation of 31 different secretory signal peptides to determine the best theoretical candidates for the secretory production of recombinant truncated human KGF in E. coli. MethodsThirty different prokaryotic signal peptides experimentally shown to be capable of recombinant protein secretion in E.coli, along with the native KGF signal peptide were selected for further investigations. The signal peptide sequences were retrieved from the UniProt database. The ability of SPs to act as a secretory leader peptide for rhKGF and the location of cleavage sites were predicted by SignalP 4.1. Physicochemical properties of the signal peptides, which may influence protein secretion, were analyzed by ProtParam and PROSOII. Furthermore, the mRNA secondary structure and Gibbs free energy profile of the selected SPs were analyzed in the fusion state with the rhKGF using Visual Gene Developer package. Results and ConclusionComputational analysis of the physicochemical properties affecting protein secretion identified Sec-B dependent OmpC, Bla, and StaI and SRP dependent TolB signal peptides as the best theoretical candidates for the secretory production of recombinant truncated human KGF in E.coli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.