Abstract

The Legionella pneumophila (Lp), human pathogen causes severe and often fatal Legionnaires' disease, produces a major virulence factor, termed 'macrophage infectivity potentiator protein' (Mip), that is necessary for optimal multiplication of the bacteria within human alveolar macrophages. Mip exhibits peptidyl prolyl cistrans isomerase (PPIase) activity, which can be inhibited by Rapamycin and FK506. Mutation of Mip protein on catalytic residues at Aspartate-142 position replaced to Leucine-142 and Tyrosine-185 position replaced to Alanine-185 that strongly reduces the PPIase activity. Therefore, we aim to develop an in-silico mutagenesis model for both important catalytic residues, validated the stability of the mutated model. Further, we have docked to the known inhibitor rapamycin with Lp Mip (native) and mutants (D142L and Y185A) to analyze the conformational and binding model. For electrostatic contributions and VanderWaals interactions are the major driving force for rapamycin binding and largely responsible for the binding differences between the Lp Mip (native and mutated) proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.