Abstract

Based on a domestic waste incineration power generation project, the dioxin emission from the waste incineration plant (WIP), phytoextraction and microbial degradation of dioxins, and dioxins human health risks reduction were investigated through in-silico methods. Based on the dioxins concentrations in soil (9.97×10-9-7.00×10-5ng/g) predicted by atmospheric dispersion model system and the Level-III fugacity model, planting schemes under different wind directions were designed considering the dioxin absorption capacity and the economic benefits for crops (i.e., barley, peanut, pea, maize and wheat). The dioxins in soils can be further degraded by five crops' rhizosphere microorganisms and fertilizers, simulated through molecular dynamic simulations. The enhanced degradation rates of dioxin by rhizosphere microorganisms of five crops reached 15.70%-28.66%. Finally, healthy dietary plans were developed to reduce the risk of dioxin exposure to the sensitive populations living around WIP. Results showed that the consumption of maize, fungus, mushroom and bamboo fungus could effectively reduce dioxins toxicity to humans by 58.13%. The systematic approach developed in this study provided theoretical support for soil remediation and human health risk control of dioxins-contaminated sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.