Abstract
Superoxide dismutases (SODs), members of the metalloenzymes family are most effective intracellular enzymatic antioxidant in aerobic organisms. These enzymes provide the first line of defense in plants against the toxic effects of elevated levels of reactive oxygen species (ROS) generated during various environmental stresses. The availability of high-throughput computational tools has provided better opportunities to characterize the protein features and determine their function. In the present study an attempt was made to gain an insight into the structure and evolution of subunits of SODs (Cu-Zn, Mn and Fe SODs) of rice. The 3-Dimensional structures of SODs were modeled based on available X-ray crystal structures and further validated. The primary sequence, secondary and tertiary structure analysis revealed Mn and Fe SOD to be structurally homologous while Cu-Zn SOD is un-related to either of them. Comparative structural study also revealed former two were dominated by α-helices followed by β-strands in contrast; Cu-Zn SOD dominated by β-strands. Molecular phylogeny indicated a common evolutionary origin of Mn and Fe SOD while Cu-Zn SOD may have evolved separately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.