Abstract

BReast CAncer gene 1 (BRCA1)-a tumor suppressor gene plays an important role in the DNA repair mechanism. Several BRCA1 variants perturb its structure and function, including synonymous and nonsynonymous single nucleotide polymorphisms (SNPs). In the present study, we performed in-silico analyses of nonsynonymous SNPs (nsSNPs) of the BRCA1 gene. In total, 122 nsSNPs were retrieved from the NCBI SNP database and in-silico analyses were performed using computational prediction tools: SIFT, PROVEAN, Mutation Taster, PolyPhen-2, MutPred, and ConSurf. Of these tools, SIFT, PROVEAN, and Mutation Taster predicted 61 out of 122 nsSNPs as "damaging", based on structural homology analysis. PolyPhen-2 classified 22 nsSNPs as "probably damaging". These nsSNPs were further analyzed by MutPred to predict basic molecular mechanisms of amino acid alteration. ConSurf analysis predicted eleven conserved amino acid residues with structural and functional consequences. We identified five amino acid residues in the RING finger domain (L22, C39, H41, C44, and C47) and two in the BRCT domain (P1771 and I1707) with the potential to deter the BRCA1 protein function. This study provides insights into the effect of nsSNPs and amino acid substitutions in BRCA1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.