Abstract
Coronavirus disease 2019 (COVID-19) is an ongoing pandemic caused due to new coronavirus infection with 3716075 deaths across the world as reported by the World Health Organization (WHO). SARS-CoV-2 main protease (Mpro) plays a vital role in the replication of coronavirus and thus an attractive target for the screening of inhibitors for the therapy of COVID-19. The preclinical drugs ebselen and PX-12 are potent inhibitors of SARS-CoV-2 Mpro and covalently modifies the active site Cys-145 residue of Mpro through selenosulfide/disulfide. In the current report, using virtual screening methods, reactive sulfur species allicin is subjecting for covalent docking at the active site of SARS-CoV-2 Mpro using PX-12 as a benchmark reference compound. The results indicate that allicin induces dual S-thioallylation of Cys-145 and Cys-85/ Cys-156 residues of SARS-CoV-2 Mpro. Using density functional theory (DFT), Gibbs free energy change (DG) is calculated for the putative reactions between N-acetylcysteine amide thiol and allicin/allyl sulfenic acid. The overall reaction is exergonic and allyl disulfide of Cys-145 residue of Mpro is involved in a sulfur mediated hydrogen bond. The results indicate that allicin causes dual S-thioallylation of SARS-CoV-2 Mpro which may be of interest for treatment and attenuation of ongoing coronavirus infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.