Abstract

The present study aimed to assess the adsorption of Lomustin on the single-walled Boron Nitride nanotube which has been examined using Density Functional Theory (DFT), agent in a solvent phase (water) at the B3LYP/6-31G (d) theoretical level. Initially, the structures of Lomustin, Boron Nitride nanotube, and Lomustin complexes with Boron Nitride nanotubes were designed in Gauss View in three different conformers and were optimized geometrically, on which IR and frontier molecular orbital computations were carried out. Adsorption energy values, Gibbs free energy changes (ΔGad), adsorption enthalpy changes (ΔHad), and equilibrium thermodynamic constants were estimated. The results showed that adsorption process was spontaneous, exothermic and non-equilibrium. The values of specific heat capacity and adsorption enthalpy indicate that this nanostructure can be used to build new thermal sensors to measure Lomustin. The results of molecule orbitals estimations showed that energy gap, after drug absorption on the nanotube surface, decreased significantly and the values of chemical hardness and dipole moment were studied after the interaction of drug with adsorbent and the results showed that drug solubility and reactivity, after adsorption on Boron Nitride nanotubes, increased significantly. According to the obtained results for adsorption of Lomustin, this nanostructure can be used as a sensing material in building new electrochemical sensors to measure this drug.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call