Abstract

Nitrogen-doped carbon nanomaterials are known to exhibit good electrocatalytic activity for the oxygen reduction reaction (ORR). However, the structure of the ORR active site and optimum content of nitrogen in the carbon lattice for ORR activity remains unknown. In this study, a series of vertically aligned carbon nanotubes (VA-CNTs) with a surface nitrogen concentration of 0, 4.3, 5.6, 8.4, and 10.7 atom % is prepared by the alumina template technique and characterized with XRD, Raman spectroscopy, SEM, and XPS. Electrocatalytic ORR activity is investigated by rotating disk electrode (RDE) voltammetry. Among them, VA-CNTs with a nitrogen concentration of 8.4 atom % exhibited the best ORR performance. This is ascribed to a greater number of pyridinic-type nitrogen sites. The good performance of less expensive nitrogen-doped CNTs makes the ORR electrodes a viable alternative to platinum for energy conversion device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.