Abstract

Investigations of the behavior of the geomagnetic field on geological timescales rely on globally distributed data sets from dated lava flows. We present the first suitable data from the Arctic region, comprising 37 paleomagnetic directions from Jan Mayen (71°N, 0.2–461 ka) and Spitsbergen (79°N, 1–9.2 Ma) and five paleointensity results. Dispersion of the Arctic virtual geomagnetic poles over the last 2 Ma (27.3 ± 4.0°) is significantly lower than that from published Antarctic data sets (32.1 ± 5.0°). Arctic average virtual axial dipole moment (76.8 ± 24.3 ZAm2) is high in comparison to Antarctica over the same time interval (34.8 ± 8.2 ZAm2), although the data are still too sparse in the Arctic to be definitive. These data support a long‐lived hemispheric asymmetry of the magnetic field, contrasting higher, more stable fields in the north with lower average strength and more variable field directions in the south. Such features require significant non‐axial‐dipole contributions over 105−106 years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.